Comparison of Water Standards for The Volumetric Karl Fischer Titration

Karl Fischer (KF) Titration is the method of choice for the determination of the water content in a vast variety of samples such as pharmaceuticals, petrochemical products, plastics, foods, and beverages. Compared to other analytical methods, KF titration is a simple, quick and unexpensive technique to selectively determine the water amount present in a sample.

Appropriate instrument qualification, calibration and maintenance procedures ensure correct measurement results. The qualification procedure of the titration instrument guarantees customers the accuracy, precision, and uptime in their daily workflow. In particular, the verification of the needed accuracy and precision of the KF titration using certified water standards is the mandatory step to complete the instrument verification.

In this application, this step is performed for the volumetric KF titration using two commonly used water standards, i.e., the 1% liquid water standard and the solid water standard di-sodium tartrate di-hydrate (15.66% water content). Both standards are titrated in two different KF solvents in combination with the 5 mg/mL one-component KF titrant.

Figure 1: The Compact Volumetric KF Titrator V30S is fully controlled by the LabX Laboratory Software.

Introduction

The Karl Fischer titration takes place in a solution mainly consisting of an alcohol, sulfur dioxide, and an organic base. The exact reagent composition used for KF titration influences the speed and accuracy of the analysis. This leads to a continuous development of KF reagents, which helps to further improve the water content determination in terms of accuracy, stability, simplicity, safety, and environmental acceptability.

This application describes the content determination in two certified water standards used to verify the equipment performance. Two different solvents were tested in combination with a 5 mg/mL one-component KF titrant.

Sample Preparation and Procedures

- 1. 50 mL of solvent is added into the titration cell.
- 2. After method start, the pretitration is automatically performed to remove residual water in the titration cell.
- Concentration determination: Approx. 1 g of a 1% water standard is added to the cell.
- Sample determination: Ca. 1 g of 1% water standard or 0.02–0.05 g sodium tartrate dihydrate, respectively is added to the cell.
- Two different methods were used: one with standard parameters (M300), and one with parameters optimized for fast titration.

Chemistry

 $\begin{array}{l} \mathsf{CH}_3\mathsf{OH} + \mathsf{SO}_2 + 3 \ \mathsf{RN} + \mathsf{I}_2 + \mathsf{H}_2\mathsf{O} \rightarrow \\ (\mathsf{RNH})\mathsf{SO}_4\mathsf{CH}_3 + 2 \ (\mathsf{RNH})\mathsf{I} \end{array}$

Analyte:

Water, H_2O , M = 18.02 g/mol, z = 1

Chemicals

• Titrant:

Aquagent[®] Complet 5, free from pyridine; c = 5 mg H_2O/mL (Scharlau, nr. AQ0015)

• Solvents:

- 1. Aquagent® Methanol, dried (ME0304);
- 2. Aquagent® Methanol Fast (nr. AQ0011)

• Water standards:

- 1. HYDRANAL[™] Water Standard 10.0 (34849)
- 2. apura® 15.66% Sodium tartrate dihydrate (1.06664)

Instruments and Accessories

- KF Compact Volumeter V20S/V30S or Titration Excellence T5/T7/T9 with KF Kit
- XP205 Analytical balance (11106027)
- Burette DV1005 5 mL (51107500)
- DM143-SC electrode (51107699)
- LabX software
- 10 mL Syringe (00071482)
- Weighing boats, 5 pcs (00023951)
- Spatula

Figure 2: The waste and solvent bottles of the Compact Volumetric KF Titrator V30S are equipped with the Level Sensor to automatically monitor the volume in both bottles.

Results

Overview:

- Two different KF solvents, i.e., Scharlau Methanol, dried and Aquagent® Methanol Fast were tested.
- Two commonly used water standards have been used as samples for the water content determination:
 - 1. Liquid water standard 10.0 mg/g
 - 2. Sodium tartrate dihydrate solid standard
- The concentration of the one-component titrant was first determined using the liquid water standard. A concentration determination was also performed with sodium tartrate to compare both standards.
- The titrations were performed using two methods with standard and fast control parameters [1, 2].

Concentration Determination and Titrant Stability:

The titrant concentration was determined by titrating series of six samples over one week to verify its stability. All results were in the range between 5.2 and 5.5 mg H₂O/mL, which was significantly higher than the nominal value of 5 mg H₂O/mL. Tests with sodium tartrate dihydrate confirmed these findings. These values are expected since the KF one-component titrant is always produced with a slightly higher concentration than then nominal value to increase the storage lifetime. The default lower acceptance limit of 4.5 mg H₂O/mL is therefore justified.

Day 1			Day 4			Day 7		
H ₂ O Std 10	R1	Sample	Na-tartrate	RI	Sample	Na-tartrate	R1	Sample
	Concentration	Weight		Concentration	Weight		Concentration	Weight
	[mg H ₂ O/mL]	[g]		[mg H ₂ O/mL]	[g]		[mg H ₂ O/mL]	[g]
1	5.462	0.8431	1	5.444	0.0590	1	5.320	0.0586
2	5.436	1.2018	2	5.449	0.0556	2	5.377	0.0548
3	5.456	1.2405	3	5.426	0.0552	3	5.425	0.0499
4	5.457	0.9109	4	5.418	0.0519	4	5.481	0.0498
5	5.461	1.4938	5	5.434	0.0543	5	5.493	0.0443
6	5.478	1.1356	6	5.442	0.0560	6	5.489	0.0457
Mean	5.458		Mean	5.436		Mean	5.431	
S	0.014		s	0.012		s	0.071	
srel	0.248%		srel	0.217%		srel	1.302%	

Titration Application Note

Overview of All Results:

			Standard P	arameter Me	thod					Fast Parame	eter Method					
			average	s	srel (%)	=	STIR	E	TIME	average	s	srel (%)	۲	STIR	E	TIME
Water standard 10 mg/g	Methanol Dried	CONC (mg/mL)	5.459369	0.027251	0.499	9	10 s	1-1.5 g	5.52-6.03 min	5.481897	0.017369	0.317	9	10 s	1-1.5 g	2.95-3.83 min
10.00 +/- 0.15 mg/g		Sample (%)	1.000	0.002	0.232	9	25 s	1-1.5 g	4.55-5.65 min	1.006	0.003	0.335	9	10 s	1-1.5 g	2.20-2.85 min
(1.000 +/- 0.015 %)																
			average	s	srel (%)	۲	STIR		TIME	average	s	srel (%)	L	STIR		TIME
	Methanol Fast	CONC 1 (mg/mL)	5.199093	0.203556	3.915	9	10 s	1-1.5 g	2.47-3.10 min	5.470506	0.022634	0.414	9	10 s	1-1.5 g	1.20-1.47 min
		CONC 2 (mg/mL)	5.458367	0.013685	0.251	9	10 s	1-1.5 g	2.91-3.17 min							
		Sample 2.1 (%)	1.001	0.004	0.398	9	25 s	1-1.5 g	3.00-3.58 min	1.004	0.005	0.449	9	15 s	1-1.5 g	1.25-1.53 min
		Sample 2.2 (%)	1.000	0.003	0.259	9	25 s	1-1.5 g	3.27-3.48 min							
			average	s	srel (%)	=	STIR		TIME	average	s	srel (%)	E	STIR	ε	TIME
Na-tartrate dihydrate	Methanol Dried															
15.66%		Sample (Na-Tartrate)	15.706	0.157	0.999	9	25 s	0.02 g	4.63-5.17 min	15.471	0.161	1.038	9	15 s	0.02 g	2.52-2.65 min
(15.61-15.71 %)																
		CONC (Na-tartrate)	5.424890	0.028196	0.520	9	120 s	0.05 g	6.58-7.90 min							
		Sample (Na-tartrate)	15.640	0.096	0.615	9	120 s	0.05 g	6.30-7.70 min							
			average	s	srel (%)	=	STIR		TIME	average	s	srel (%)	E		E	TIME
	Methanol Fast	CONC	5.465792	0.020419	0.374	9	10 s	1-1.5 g	3.12-3.33 min	5.430755	0.070632	1.301	9	120 s	0.05 g	4.43-5.23 min
		Sample 1 (Na-tartrate)	15.641	0.152	0.971	9	25 s	0.02 g	2.67-2.90 min	15.646	0.094	0.602	9	120 s	0.05 g	4.15-5.30 min
		Sample 2 (Na-tartrate)	15.746	0.149	0.947	9	25 s	0.02 g	2.62-2.95 min							
		CONC (Na-Tartrate)	5.435483	0.011750	0.216	9	120 s	0.05 g	6.22-7.52 min							
		Sample (Na-Tartrate)	15.454	0.329	2.129	9	120 s	0.05 g	6.72-7.68 min							

Remarks

Titration Time

- The water content determination was compared using standard control parameters [1] and optimized parameters for a faster titration [2].
- The results obtained with the faster method parameters show that the titration time can be shortened to approximately 50–60% of that achieved with the standard method.
- Note that the parameter TIME refers to the duration of a sample analysis from the end of standby mode to the end of the titration method function, thus including waiting for sample addition as well as the stir time before titration.

KF Titrant Stability

- The concentration determination has been repeated over seven days to monitor the stability of the KF titrant, i.e., how fast its concentration is decreasing with time.
- The results show that the KF titrant concentration is almost constant during seven days, independent of the water standard, the stir time, and the sample size.

Accuracy and Precision

- The accuracy of the standard method is better with the Methanol, dried solvent. On the other hand, the use of Methanol, fast solvent yielded even more accurate results with the adjusted method.
- The recovery of both water standards agrees well with the certified values, especially for the liquid water standard since the liquid standard is completely dissolved.
- On the other hand, di-sodium tartrate dihydrate has a limited solubility in methanol, i.e., approx. 150 mg in 50 mL methanol. Hence, the sample size was

reduced to 20 mg to enable a series of 6 samples in the same solvent. The rather small sample size may affect the precision of the determination since the relative weighing error is larger.

 Alternatively, when using a sample size of 50 mg, the KF solvent amount was increased to 100 mL–120 mL to accommodate 6 samples of sodium tartrate. Note that after 4 samples the KF solvent becomes turbid. This leads to a slightly lower repeatability.

Waste Disposal and Safety Measures

Wear personal protection at all times while in the laboratory, i.e., safety glasses, lab coats and gloves. Read and understand the appropriate MSDS's when using chemicals prior to use.

Dispose the sample solutions as non-chlorinated organic solvents.

Literature

- [1] "Concentration and Content Determination with Water Standard 10.0 mg/g", METTLER TOLEDO Titration Application no. M300.
- [2] "Volumetric Determination of Water Standard Samples in Different KF Solvents", METTLER TOLEDO Titration Application no. M794.

Further Information

Titrator Compact V30S - Overview - METTLER TOLEDO (mt.com)

Measured Values

Concentration Determination - Standard Method – Methanol Dried:

HYDRANAL[™] Water Standard 10.0

Figure 3: Karl Fischer E-t titration curve (blue) and accumulated water H₂O-t (grey) of 1% water standard sample in Methanol, dried (Series 01-sample 4/6, standard parameters).

Time	Volume	Signal	H ₂ O	Drift
[S]	[mL]	[mV]	[mg]	[µg/min]
0	0.00000	608.2	0.0000	6.3
0	0.00000	608.1	0.0000	6.3
1	0.00075	608.9	0.0039	0.0
2	0.00200	608.8	0.0104	119.7
3	0.00350	608.7	0.0182	210.3
4	0.00475	608.6	0.0247	274.1
5	0.00625	608.6	0.0325	296.6
61	0.18625	611.1	0.9683	1636.1
62	0.19225	611.0	0.9995	1659.3
63	0.19850	610.9	1.0320	1690.1
64	0.20450	610.9	1.0632	1931.5
65	0.21025	610.9	1.0931	1946.7
66	021675	611.5	1.1269	1985.7
144	1.55075	94.9	8.0625	46.7
146	1.55075	90.7	8.0625	38.9
146	1.55075	85.2	8.0625	23.4
148	1.55075	85.2	8.0625	23.4
148	1.55075	84.5	8.0625	23.4
149	1.55075	93.6	8.0625	7.8

Method

Standard Parameters / Fast Method Parameters:

001 | Title

Туре	KF Volumetric
Compatible with	V20S/V30S/T5/T7/T9
ID	M886
Title	KFVol 1-comp 5

002 | Sample

Joumpie	
Sample	
Number of IDs	1
ID 1	
Entry type	Weight
Lower limit	0 g
Upper limit	5 g
Density [g/mL]	1.0
Correction factor	1.0
Temperature	25.0 °C
Autostart	Yes
Entry	After addition
Concentration	
Titrant	Scharlau aquagent 5
Nominal concentration	5 mg/mL
Standard	Water-Standard 10.0
Entry Type	Weight
Lower limit	0 g
Upper limit	2 g
Mix time	10 s
Autosttart	Yes
Entry	After addition
Conc. Lower limit	4.0 mg/mL
Conc. Upper limit	5.6 mg/mL
End of Sample	-
Open series	Yes

003	Titration	stand
000		Juliu

••		
	Туре	KF stand
	Titration stand	KF stand
	Source for drift	Online
	Max. start drift	25 μg/min

004 | Mix time

Duration	25 s / 15 s

005 | Titration (KF Vol) [1]

Titrant	
Titrant	Scharlau aquagent 5
Nominal concentration	5 mg/mL
Reagent type	1-comp

Sensor	
Туре	Polarized
Sensor	DM143-SC
mV	mV
Indication	Voltametric
Ipol	24 μΑ
Temperature Acquisition	
Temperature Acquisition	No
Stir	
Speed	35%
Predispense	
Mode	None
Wait time	0 s
Control	
Endpoint	100.0 mV / 80.0 mV
Control band	400.0 mV
Dosing rate (max)	5 mL/min / 15 mV/min
Dosing rate (min)	80 µL/min / 400 µL/min
Start	Cautious
Termination	
Туре	Drift stop relative
Drift	15.0 µg/min
At Vmax	10.0 mL
Min. time	0 s
Max. time infinite	Yes

006 | Calculation R1 (Content)

Result	Content
Result unit	%
Formula R1 =	(VEQ*CONC-
	TIME*DRIFT/1000)*C/m
Constant	C = 0.1
Decimal places	3
Result limits	No
Extra statistical functions	No
Send to buffer	No
Condition	No

007 | Calculation R2 (Titration duration)

	,
Result	Titration duration
Result unit	min
Formula	R2 = TIME
Constant	C = 1
Decimal places	3
Result limits	No
Extra statistical functions	No
Send to buffer	No
Condition	No

008 | End of sample

METTLER TOLEDO Group

Analytical Local contact: www.mt.com/contacts

Subject to technical changes © 11/2022 METTLER TOLEDO. All rights reserved 30819642 / M886 v1.0 Group MarCom RITM945958 NM/CDC

www.mt.com .